PROCEEDINGS
of the
1979 Conference on
Information Sciences and Systems

Department of Electrical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

AN APPROACH TO THE ANALYSIS OF CONTEXT FREE LANGUAGES

Sudhir K. Arora, Lea Ginzberg and K.C. Smith
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

Abstract

This paper presents a fresh way to analyze
context free languages. This leads to a more
efficient algorithm to find semilinear set repre-
sentation for a grammar. The new algorithm is by
no means optimum and further work is needed to
achicve this end, Several grammars have been
tested on an implementation of the algorithm.
Variations of the implementation can be directly
applied to several other problems which are
mentioned in this paper.

Introduction

This paper presents an algorithm to analyze
context free languages and its computer implemen-
tation. While going through this work, it be-
comes increasingly clear that this way of analy-
zing context free languages can be applied
directly to a wider set of problems.

Parikh showed [1] that every context free
language (CFL) cun be represented as o semllinear
set of vectors in a |V, [-Dimensional space where
|VT] = No. of terminals in the language. However
to obtain this semilinear set of vectors for any
language one has to examine a grammar represen-
ting it in the following way.

(1) All possible trees in which the same vari-
able may be repeated at most (t+2) times in
a path where t = IVTI + |VN| and |V, | = No.
of variables and |V | = No. of termgnals.
This gives the cons?unt vectors of the semi-
linear set,

(2) All possible tree sections with o variable
as the root and the same variable occurring
only once in the result and no other vari-
able in the result. Further any variable
may repeat (t+2) times in any path where
t= V|« [Vl

It is obvious that as t increases this task
becomes rapidly impossible. Our algorithm does
this job as follows.

(I To find the constant vectors, the number
(t+2) is the upper bound on thc number of
times a variablc may repeat in a path in any
tree. However the algorithm does the job by
examining a much lesser number of trees. 1In
rare cases of course one has to go to the
upper bound.

(2) To find the periods, the algorithm provides
a more categoric result. It shows that the
nunmber of tree sections that need be examined

524

is in fact independent of 't' and that any
variable need occur at most twice in any
path in any tree section that must be
examined.

The algorithm has been implemented using
ALGOL-W on IBM 370. The analyses and results
for three grammarsare presented. In the case of
ono grammar morce details are presented and the
ulgorithm ts compared with Parikh's methed [1].
Finally it is shown that this implementation in
some ways is more general than [1].

Some Points

(1) A context free grammar (CFG), G is represen-
ted as, G = (V,, > P, S) where VN = set of
variables, V, N seI of terminals, P = set
of productiozs, S = start symbol.

(2) A derivation tree in G is any tree with the
start symbol, S as the root and only ter-
minals in the result.

(3) A trec in G is any tree with any variable as
its root and both variables and terminals in
its result.

(4) We do not distinguish between nodes in a
tree and their labels. Both are referred to
by the label.

(S5) The occurrence of the same variable, B at
different nodes in a treec is identified hy
Bl’ BZ, ctc,

(6) PERIOD f CONSTANT refer to u tree or the
result of that tree, while 'period! and
'constant' refer to the Parikh vectors cor-
responding to PERIOD § CONSTANT.

(7) The Parikh vector of a variable is a zero ,
vector, i.e., P(A) = (0, 0 ... 0). /ﬁf

(8) L(G) is the language generated by the 7
grammar G.

(9) The implementation can handle grammars with
up to 26 variables (A to Z) and up to 10
terminals (0 to 9).

(10) The null word, e, is treated like any other
terminal (represented by 0) and is elimina-
ted at the end of the program from the set
of PERIODS.

(11) By reduced grammar, we mean a grammar from :
which all variables which cannot be reached /

from S or which do not terminate have been
climinated.

Definitions

N, -Variables. All variables that do not repeat
aiong any path in any derivation tree.

N, & N,-Variables. All variables, A, s.t. if we
Eénera%e all derivation trees in grammar (VN, VT’
P, A) in which no variable is allowed to repeat
along any path except under the following
circumstunces.

a) Tho variable A repeats onco in any path,

1) Other variables in puth AA, may occur twico
in any path, onc of which is in tho path AA
itself. Then if A repeats along only onec
path in any tree, it is an N,-variable. If
A repeats along more than oné path in any
tree, it is an N,-variable. Any other vari-
ables may occur gnly once in any path.

PERIOD. Take the collection of derivation trees
generated in N, § N, definition. In each tree
cut the appropriate subtree to expose a single
occurrence of A (A is the root also) at a time.
The remaining tree part or its result containing
all terminals and « single A is callod a PERIOD
or an A-PERIOD.

CROWNS. Take all trees with S as the root in
which no variable repeats along a path and the
result contains only terminals and at least one
variable from (N, v N,). These are called CROWNS.
(Note if S belongs to (N, u N,) then the tree

with only one node, i.e.zs issalso a CROWN).

TERMINATING TREES. Take all trees with A as the
root in which no variable repeats along a path
and the result contains only terminals and A is
any element of (N2] Ns). ‘Thesc are TERMINATING
TREES.

CONSTANTS are derivation trees in the CFG which
are obtained as follows:

(a) Take all derivation trees in which only N1
variables occur. These are CONSTANTS.

(b) To cvery CROWN attach TERMINATING TREES to

get all possible derivation trees. These
are also CONSTANTS.
(c-i) Take the CONSTANTS obtained in (b). One at

a time. Find all PERIODS which have their
root variable occurring in this CONSTANT and
also contain at least one variable in(NzuNg
which does not occur in the CONSTANT.

(cdi) Divide these PERIODS into sets s., S,, ...S
such that every member of set s , 1 é igr

has the same new variables belofiging to
(Nzu N3) and not occurring in the CONSTANT,

r

r
Form sets b], hz...Sr such that Sl = ‘tl Sis
r T !

S,= U u s. xs.) for i <J
e i=1j=2(1 i ’

525

r r r

S.= u u u (s, xs,xs,) for i<j<k
3 jolje2kes 03T K

and so on. Define the set S = v Si' Each

i=1
element of S is a set of PERIODS ranging
from 1 to r in number. INSERT (defined
later) these PERIODS in the CONSTANT, one
element of S at a time to get a new CONSTANT
cach time.

(4} Take the CONSTANTS gonoratoed In step (c¢);
one nt a time. Find all PERIODS which have
ut least one variable in (N, v N.) not
occurring in the CONSTANT afid th&ir root
variablc is one of the new variables in
(N2 u N,) introduced into the CONSTANT in
stép (cJ. Repeat step (c-ii) for these
PERIODS to get new CONSTANTS.

(e) Carry on this process till no new CONSTANTS
can be got.

Operations

INSERTION Take a path in a derivation tree in
whTch somo variablo, B occurs and B bolongs to

(N, u N,). We cut the subtree at B, attach a B-
PERIOD gt the exposed B and then reattach the cut
subtree to the only B occurring in the result of
the B-PERIOD. The B-PERIOD is said to be INSER-
TED at the B occurring in the original derivation
tree.

DISSECTION is an operation on a derivation tree
in a grammer. It is defined as follows: If we
have a tree in a CFG, G s.t. a variable B repeats
in a path, let the two occurrences of B be called
B. and B, where B, is closer to the root. We cut
tﬁc tree at B1 ana B,, remove the tree part bet-
ween B. and B, and a%tach the subtree at B, to
the node at B>. This is defined as DISSECTION
between the nodes 81 and Bz.

TRANSPLANTATION Take any derivation tree in
which a variable B occurs more than once in a
path. DISSECT the tree part between any two
occurrences of B in the same path and INSERT it
at another occurrences of B which is different
from the location from where the tree part has
been DISSECTED. This operation is called
TRANSPLANTATION,

LEMMA I: - When the operations of INSERTION, DIS-
SECTION or TRANSPLANTATION are done on a deriva-
tion tree, the resulting tree is another deriva-
tion tree in the same grammar.

PROOF: - This is obvious from the definitions.

LEMMA I1: - The Parikh Mapping of a string W,
Derived in a CFG, G is unaltered under the opera-
tion of TRANSPLANTATION.

path. In addition B occurs clsewhere in the tree

also. Let these occurrences of B have labels B

B,, B, as shown in Fig. 1. Let the subtrees atl
B, B and B_ derive words, W., W,, and W_ res-
é :2 1 2 3
péctively. cn
W = xwlywsz
P(W) = P(x) + P(wl) + P(y) + P(ws) + P(z)
Also
- '
wl x'Wzy
P(W)) = P(x') + P(W,) + P(y")
P(W) = P(x) + P(x') + P(W,) + P(y') + P(y)

+ P(WS) + P(2)

Now we carry out TRANSPIANTATION as follows:
Remove the tree purt between B, and R, and INSERT
it at the B, location. The trce aftef TRANSILAN-
TATION lookS as shown in Fig. 2 which generates

a new word W'. We show that P(W') = P(W)

n

'
12.

1)
xwzyx wsy z

W' xWZyW

Hence,
P(W') = P(x) + P(Wz) + P(y) + P(x') + P(W,)
+ P(y') + P(z)
= P(W

LEMMA III: - Let T. be a derivation tree with the
result W. and let T2 be the derivation tree .
after IN&ERTION of a“period in T; and let the re-
sult of T2 be W,. Let the PERIOﬁ inserted be an
A-PERIOD, “pA. Thon we can write P(H,) = P(W)) +
P(phY. -

PROOF: - Consider the derivation tree of W, shown
in Fig. 3:2. A is the variable at which tﬁe A-
PERIOD, p™, shown in Fig. 3-3, is to be INSERTED.
The result of the A-subtree in Fig. 3-2 is W,.
Hence W xWAy where x and y are strings of ter-
minals, P(W.)"= P(x) + P(WA) + P(y). Consider
the A-PERIO& shown in Fig."3-3. The result con-
tains only one A, and x, is the string of termin-
als to the left of A and Y is the string of
terminals to the right of "A. Hence

p" = xay, and PGY = B v PEA) + POy
= P(x)) + P(y)

Now consider T, shown in Fig. 3-1. From the fig-

ure, it is obvious,
Wy = xx Wy
P(Wzl = P(x) + P(xl) + P(WA) + P(yl) + P(y)

A
= P() + P
LEMMA IV: - Let T, be a derivation tree with the

result W. and let T2 be a derivation tree after
DISSECTIbN of Tl at“nodes B1 and B2 and let the

526

result of T, be Wz.
and B2 be dénoted”d
P(WZ) = P(Wl) - P(q

Let the tree part between B

E qB. Then we can write 1
).

PROO: - Consider the derivation trec of wl in

Fig. 4-1. B, and B, occur in a path. The sub-

tree at B dérives a word W,. The subtree at B
a“word sty. Hence,

derives B 1

W xleByyl where X and y, are strings of

terminals
P(x;) + P(x) + P(W) + P(y) + P(y))

1

n

P(Wl)

Consider the derivation tree of W, and the trce
part qB shown in Figs. 4-2 and 4.%.

wz = x]WBy]
qB = xBy
P@®) = P(x) + P(y)
and P(W,) = P(x)) + P(Wy) + P(y,)
= P(H) - PaP.
THE ALGORITHM: The algorithm for finding the
Parikh Mapping of any CFG is given.

(1) 1Identify Nl’ N2 and N3 variables.

(2) Enumerate all trees and find the PERIODS as
outlined in this paper in the definition of
a PERIOD.

(3) Enumerate all the CONSTANTS as outlined in

the definition of a CONSTANT. This is done

after finding the CROWNS and the TERMINATING

TREES.

(4) Find the Parikh Mapping of the CONSTANTS and

the PERIODS to obtain the semilinear set, X,

’VTI'
*Niv, |
T

N, =set of positive integers where 1 < i < IVT!

(5) We define X as a set of points in a
dimensional space N, x N, x ...

where |V, | = No. of terminals.

n T {A) A
X =u [pw)+ ¥ Yok x P(P] (1)
j=1 3 Ain N i=1
where wj = one of n possible CONSTANTS,
P(Wj) = Parikh mapping of Wj,
NW = set of variables in (N, v N,) which
j . ivatiod tred
occur in the derivation treé of Wj.
P} = one of r(A) possible A-PERIODS
P(p?) = Parikh mapping of p?
ki = An element of set Ni
X = A semilinear set with P(W;) as con-

stants and P(p?) as periods.

PROOF: - We prove for any CFG, G.

3

(1) 1If W belongs to L(G) then P(W) belongs to X,
i.e. P(L) s X.

(2) 1If x belongs to X then there exists a W be-
longing to L(G) s.t. P(W) = x, i.e. X £ P(L).

PART 1. Let G be a CFG and let W be a string of

terminals s.t., W belongs to L(G).

We show that P(W) can be put in the form of X,
i.e. P(W) = x wherc x belongs to X. Consider the
derivation tree of 'W'. We show that it is pos-
possible to apply DISSECTION operation to this
derivation tree repeatedly till we are left with
a derivation tree which is a CONSTANT, W! and a
number of tree parts which are PERIODS, JpA. Then
since the Parikh mapping of 'W' is unalterdd un-
der TRANSPLANTATION it is obvious that as long as
the derivation tree for the constant, W!, has all
the variables, A belonging to (N, y N,) that
occur in the derivation tree of 2W' we will al-
ways be able to put back together this CONSTANT
W! and the PERIODS p? by using INSERTION to get
afother word Wl whos& Parikh mapping is the same

T(A) A
as 'W', i.e., P(W) = P(W!) +) k;P(p,).
I Adn N i=1

N' = All variables A s.t. at least one A-PERIOD
has been DISSECTED from the derivation tree
of 'W'. (2)

Now the CONSTANT W! that we obtain from the abovo
described proceduré may not always contain in its
derivation tree all the variables, A belonging to
(N, u N3) that occur in the derivation tree of
'WT. We show that it is possible to obtain from
W! another CONSTANT W, such that the above con-

dition is satisfied. “Hence
A) A
P(W) = P(W,) +) r& k.P(p.) = x belonging
3 Ain NW; i=1 11 to X

We proceed as follows. Start with the root, S in
the derivation tree of 'W'. We apply the follow-
ing procedure only to those subtrees, the root
variable of which repcats in some path (possibly
more than one) in that subtree. It may be that

S itself repeats in some path - then we apply the
procedure to the whole derivation tree. So with-
out loss of generality, we assume that S does not
repeat.

(1) Proceed from S along each path till we come
to the first variable that repeats in its

own subtree or a terminal as shown in Fig.S.

In this figure, C and D do not repeat while
A, and B repeat in their own subtree. The
s&btree at B has not been shown. Lower case
alphabets arc terminals.

The subtrees at A; and B can be considered
the same way and DISSECTED the same way. So
we consider one of them, say, A -subtree. We
follow the convention that Al’ A2 - are

)]

)

6)

&)

527

different occurrences of A in the derivation
tree. Let the root of this subtree be Al'

From A, trace a path to the next occurrence
of A iA the subtree. (Any one occurrence if
there are more than one) and call it A_, as
shown in Fig. 5. Assume some variable, B
repeats in this path, say, B, and B,. We
can DISSECT between the nodeg B ang B,. By
repeated application of DISSECT operation we
arrive at a tree in which no variable re-
peats in the path A, and A2 as shown by Fig.
6. Further we may ﬂavc several tree parts
like B B2 which can be treated like A, A
separa%ely. The only difference is th%t iz
has a subtree attached to it while B, is an
exposed node.

The tree part A, A, may have other paths

starting from v%rigbles in path A, A, (ex-
cluding A.), say, from A, and C a} sfiown in

Fig. 6-4.” We follow thede paths and their
branches till we come to terminals or vari-
ables, that repeat in their own subtree. In
the Fig. 6-4, B, and B, do not repeat in
their own subtrdes whife Cl, D,, A,, E, and
F, repeat in théir subtrees an& a ind % are
t%rminals. Hence we have a tree part within
this A, subtree s.t. the result of this tree
part (%all it s-tree) contains either ter-
minals or variables that repeat in their own
subtree. This is represented as shown in
Fig. 7-1 where the variables that repeat in
their own subtree (excluding A,) are shown
on the periphery and the originial A, A, path
is diagramatically shown as the symbol h’.

Each of these variables that repeat in their
own subtree can be treated just like the
variable A, and each of them will give rise
to similar s-trees within the A1 subtree.
This is as shown in Fig. 7-2.

Now we consider variables A,, Az, FZ’ E,, D2
and C,. If they repeat in %heir owii subtreé
they will give rise to other s-trees. If
they do not then we follow all paths start-
ing from them till we rcach variables that
do repcat in their own subtrees or terminals.
Thus we will get a fresh crop of s-trees
within the A, subtree. This is as shown in
Fig. 7-3. Wé continue this process till all
possible s-trees have been identified, i.e.
in the A4, F4, D4, C4, FZ’ EZ’ D2 and C2
subtrees no variable repeats. These subtrees
are by definition TERMINATING TREES.

Now the s-trees have the following proper-
ties;

(a) In s-tree A, A, no variable repeats in
172
path Al A2.

(b) Any variable occurs at most twice in a
path, one occurrence of which is in path
A1 A,. This can be seen from Fig. 6-4.

In the path A.C no variable repeats and
in paths star%ing at Ctob, E, and F
no variable repeats. So a var}able c%n
occur at most once in A C and once in
any path starting from L. This argument
can be extended to all paths,

(8) Therc are a finite number of s-treces in the
A, subtree. We start with those s-trees
from which no other s-tree originates, say
F, and F, s-tree in Fig. 7-3. (This is al-
wéys posgible because of finite number of s-
trees), We DISSECT at nodes F; F,. The
tree part F F4 is a PERIOD. w& DiSSECT all
such periodg.

(9) In general we consider the s-tree A, A

after all the periods have been D]SéEC%ED.
It looks as shown in Fig. 7-4. 1t has TER-
MINATING TREES attached to variables at its
periphery and possibly some extra variables
such as F_, E_, D, and C. at A_. To thosc
extra var%ablgs TERMINATTNG TREES are attac-
hed. We can show the following:

(a) The subtree at A2 in Fig. 7-4 is also a
TERMINATING TREE. This is because F_,
E., D,, C, and A, do not repeat in tﬁeir
réspeétiv subtrées. (Otherwise s-trees

could be formed). Also F_, D_ and C

subtrees are TERMINATING %REE@ - henée

along any path no variable repeats in
them. So in A, subtree no variable re-
peats along an§ path which is the de-
finition of a TERMINATING TREE.

(b) If we DISSECT A A2 then A1 A, tree part
is a PERIOD. is“follows™ from the fact
that no variable in paths A, A_, A1 C,,
A; D, AE and A F can rdpedt if Al,
c;, 6 . él’ F termi&ating trees for
olher&ise s-trees could be formed. So

the A A, trec part still satisfios the

condilions in step (7) and hence it is

a PERIOD.

(10) Similarly we can reduce the tree parts like
B, B,, removed in steps (3), (5) and (6), to
PERIGDS.

(11) Similarly all other subtrees of the deriva-
tion tree of 'W'% can be treated like the A
sybtree. The end result is a set of perio&
p; and a derivation tree as shown in Fig. 8
where A, and B have TERMINATING TREES attac-
hed to {hem. This derivation tree has no
variable repeating in any path (otherwise an
s-tree could be formed). If we remove the
TERMINATING TREES at A, and B the remaining
tree part is a CROWN. "Hence the derivation
tree derives a CONSTANT, W!. So we can ex-
press the Parikh mapping of 'W' in the form
shown in equation (2).

Now we show how to obtain, W. from W!. We
do this by the following procedurd. J

528

-W.; so it must be in one of the PERIODS).

(1) Consider the derivation tree of W!. No
variable repeats in any path in this tree.
Hence if we cut the tree at any set of vari-
ables belonging to (N, u N.) and remove the
subtrees the remaining poréion is a CROWN.
List out all the variables belonging to
(N, U N3) and occurring in the derivation
trée of W;. Let them be (Al’ Bl' ced)e

(2) Consider all the A -PERIODS, B -PERIODS,...
and separate out those PERIODS "that have at
least one variable occurring in them which
belongs to (N, u N,) and does not occur in
the derivatiofi tre2 of W!. Divide these
PERIODS into sets S A L such that
every member of set’s.; 1 £ 1 £ r has the
same new variables be}onging to (N2 u N.)
and not occurring in the derivation treg of
W!. Form the set § = (s1 x s, x s_). Each
mémber of S_ is a sBt of 'PERIODS which col-
loctively cButain a1l the above mentioned
new variables., Also each member of S_ con-
tains the same periods as some memberfof

H S; defined in the definition of a CON-
i=1
STANT. INSERT all the PERIODS in one ele-

ment of S_ into the derivation tree of W!.
Then by tRe definition of a CONSTANT thelnew
derivation tree W' is either a CONSTANT or
its Parikh mapping is the same as of a CON-
STANT. Let the new variables introduced in
wg be (P},Q...).

(3) Repeat step (2) for P.-PERIODS, Ql-PERIODS,
... to get a new CONSTANT. .

(4) Repeat the procedure in steps (2) and (3) as
many times as necessary till no new vari-
ables can be introduced to the CONSTANT.
Call this final CONSTANT, Wj.

We can show that all variables belonging to
(N, v N.) and occurring in the derivation trec of
W, also”occur in the CONSTANT W.. Suppose there
is a variable, A which belongs to (N2 u N.) and
occurs in the derivation tree of W bt noé in the
derivation tree of W.. Locate a PERIOD in which
A occurs. (Always passible because A is not in
If the
root of this PERIOD (say, B) occurs in W., then
ohviouslv it should have normally been cévered by
the step (4) in the above procedure. Now A may
be the root of a Period and A does not occur in
W.. Then find a PERIOD which contains A and has
aldifferent variable (say, C) as its root. Check
if C occurs in W.. If not, find a PERIOD in
which C occurs afld a different variable (say, D)
as its root. Repeat the process till we find a
PERIOD whose root (say, D) occurs in W.. (This
is always possible because all these viriables
and PERIODS were present in the original deriva-
tion tree of W). Now this D-PERIOD introduces a
new variable to W.. So it should have been con-
sidered in step (3) of the above procedure. So
C does occur in W.. But C-PERIOD contains A
which is not in wi. So it should have been

considered in step (4). So A occurs in W, lience
all variables belonging to (N, u N;) and $ccurr-
ing in the derivation tree of "W alSo occur in the
constant, W.. Hence we can cxpress the Parikh
mapping of W in the form shown in equation 1).
So if W belongs to L(G) then P(W) = x belonging
to X, i.e. P(L) S X.

PART 2. We show that for every x in X there ex-
ists a W belonging to L(G) s.t. P(W) = x.

A B
lLet x = P(Wj) + klP(pl) + kZP(pz) + ...
Take the CONSTANT W. and INSERT PERIOD p? in it
to get another word wl.

Now P(wl) = P(Wj) + P(p?) --- Lemma IlI.

Again INSERT p? in the derivation tree of W, to
get Wz.

P(H,) = P(,) + ZP(p?) -—- Lemma III.

2)
Repeat the process k, times for pA then kz times
for pg and so on to get a word W, s.t.

P(H) = P(H)) + K PEY) + KP(RR) + -on = X

Since W has a derivation tree in the grammar G;
W is in L(G). Hence,

X S p(L).

From part (1) and part (2) of the proof X = P(L),
i.e. the set X obtained by the algorithm repre-
sents the Parikh mapping of the CFL.

The Results

Test runs for two grammars are presented.

The analysis part of the test run shows the ex-
tent to which this implementation is unoptimized.
In the case of example 1, we compare our algori-
thm to Parikh's method [1]. This comparison is
presented in Note 1 while Note 2 points out some
ways in which our algorithm is more general than
Parikh's method.

Note 1: In the example 1, using Parikh's method
we will have to examine Z, trees for CONSTANTS
and Z, tree sections for *ERIODS where,
7
S22+ 2y s 2HE e @ 2 e @Y

2
4
. (23)6 . (23)7
2>2, +2+ 2282528,
+ 2+ 22 + 23 + 24 + 25 + 26 + 2? .

These bounds are obtained as follows. Star-
ting with S, we can generate two derivation trees
in which A occurs only once in any path. Taking
each of these two trees we can generate another
tree in which A occurs twice in some path and
there are a maximum of three such paghs in the
tree. So we can have a minimum of 2° derivation
trees in which A occurs twice in some path.

529

Ruqogrlng this process we will have a minimum of
(232 troes in which A occurs thrice in any path
ond 30 on. lence the lower bound for Z,. Simi-
larly for Z, we find the lowor hound fo} the num-
ber of tree§ in which A, B or C is the root and
A, B or C respectively is repeated in the paths
of the tree.

By our algorithm, for example 1,
Total number of CONSTANTS generated = 72
Total number of PERIODS generated = 78

In addition in our algorithm we have,
Number of CROWNS generated = 2
Number of TERMINATING TREES generated = 8

Thus our algorithm improves the efficiency
by several orders of magnitude. However an opti-
mized algorithm could possibly generate only 7
CONSTANTS and 10 PERIODS for example 1 which is
the minimum number.

Note 2: Our algorithm is in some sense more gen-
eral Than Parikh's method. i) It can handle
rules of the form A + A. ii) It can handle the
null word.

In some cases, our algorithm comes close to
optimum as shown by example 2.

Conclusion

A fresh way to analyze context free grammars
have been presented. This leads to a more
efficient algorithm to find a semilinear set re-
presentation of any context free grammar. The
algorithm, although it improves on the earlier
method [1] by several orders of magnitude, is,
however, not optimized as is seen by the results
of the implementation. This approach can be ap-
plied to the question of ambiguity in context
free grammars., Many solvable and unsolvable pro-
blems about this area are presented in [2,3,4].

This approach and in particular, variations
of the implementation can be used as algorithms
for some of these problems.

Roferences

[1] Parikh, R.J., Language Generating Devices,
M.I.T. Res. Lab., Electron Quart. Prog.,
Dept. 60, 1961, pp. 199-212.

Hopcroft, J.E., Ullman, J.D., Formal Langu-
ages and Their Relation to Automata,
Addison-Wesley Publishing Co., 1969.
Chomsky, N., Schutzenberger, M.P., The Al-
gebraic Theory of Context Free Languages,
Computer Progrmaming and Formal Systems,
North Holland, Amsterdam, 1963, pp. 118-161.
Ginsburg, S., Ullman, J., Ambiguity in Con-
text Free Languages, JACM, 13:1, 1966,

pp. 62-88.

(2]

(3]

[4]

Fic &6 °

rie &

AT
a /1 ll \B\\
'\
® VAN
. (- A D\
?A By——Cy
e o
@ i‘:\ra.:a
A L]

530

ficr

. 7(:/]“'“0**0-\-

S
a c— I 0~—g
v A, <
(3
O
1
Ae ~

/E./i:.‘\hv .

77 R

®

A LIHIODS
n opidtaud
C o I00%
S PLRICYY

enue

MEINEVYY TLTAL PER LODS

=
TTYOTAL PUITCOS GLUTRATEDW =7

MIN £3, CF CCUSTANTS
TUTAL tlls GF CINLTANTY G

R »- -
WATED » 72

BIN Bt e wiLTh AL $H1Y - ?

TOVOTAL L ML HPAR AT TT GTNIRATCD AR ~ AR
WO, Lt Cnrmtey NeRATED - 2
LI R LR T A TN R SRV [T s

Q01,10 N s IV LELCUT UM

v e

'S

kxanple 2
"~ GV GRAuNAR

A =3

A e3> 1Ay

W o> D

U -> i

C ->0b

L€ =3t - . - . e .

€ => 1 "

v -> <

5 => 1c2

$ > 1av2

1]
i
+
»x

q => 2
a -> 1w - - _
€ =>0n -
€ => 12
€ => hic2?
0 =>C
TITUTT S ey jC2 T TTo T e om e
S => 1A
T 3FW) INF AR IR RE m e e e e e
sssscosssessven
NEZL CF TLEWINALS @ 12
cou TANTY PERLLLS .
(’.u’) t2.2)
o L0) o - tiel) (2.0) - -

M
HEN NCe CF 5 ML RLODS
TToelewus TOTAL STRIODS s

1]
T
]
. k4
. o
3
3

TATAC #2105 S RERATEO

HIN N, BE CENTANTS - 2
TUTAL file OF COnulA%NTA G NLHATLY s >
MIN Y, FT CSEMICINT AW P TR » 2
TOTAL v »lL la AL 3000 Gl N uA"u x L
” e CaOwh L G N .
NYe OF TLRAMINATING 1:-!»5 Gt -..4-lnnn [

009434 S ONDS

TN EXECUTICN

531

T OTMIN NG,

A -

A . e
8

c

< h

< T - -

]

o

s

$. .
H

SCMILINFAR 5ETS C s -
AL I TY TS Y

gaoen ox re-aumu.s = (1.2,3)

cans eErians

MINTMUM YOT A
TOTAL #tulons

pIRIANS e)
afweRtiLos 2

ar - 3

[- |

o ¢ - 2

WK Nde LR w o atun, - 1
MIN NJ. 3P 3 PRRIUDS - 3
5

L]

MIN NO. OF CUNGT
TOTAL M. uf CﬂNS'An‘ls GCNTAATFD

OF SUMILINCAA SETS
TOTAL STMILINZAN SETS GENFNATED

NQe OF CPNuNYG SEMERATE
NJe OF TEKMINATING YRt‘S hlkl‘klf‘oa

006,23 SECUVDS IN LATCUTION

